Georgia Department of Education

GSE Third Grade Curriculum Map						
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7
Numbers and Operations in Base Ten	The Relationship Between Multiplication and Division	Patterns in Addition and Multiplication	Geometry	Representing and Comparing Fractions	Measurement	Show What We Know
5-6 weeks	5-6 weeks	5-6 weeks	3-4 weeks	5-6 weeks	4-5 weeks	3-4 weeks
MGSE3.NBT. 1 MGSE3.NBT. 2 MGSE3.MD. 3	MGSE3.OA. 1 MGSE3.OA. 2 MGSE3.OA. 3 MGSE3.OA. 4 MGSE3.OA. 5 MGSE3.OA. 6 MGSE3.OA. 7 MGSE3.NBT. 3 MGSE3.MD. 3	MGSE3.0A. 8 MGSE3.0A. 9 MGSE3.MD. 3 MGSE3.MD. 5 MGSE3.MD. 6 MGSE3.MD. 7	MGSE3.G. 1 MGSE3.G. 2 MGSE3.MD. 3 MGSE3.MD. 7 MGSE3.MD. 8	MGSE3.NF. 1 MGSE3.NF. 2 MGSE3.NF. 3 MGSE3.MD. 3 MGSE3.MD. 4	MGSE3.MD. 1 MGSE3.MD. 2 MGSE3.MD. 3 MGSE3.MD. 4	ALL
These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units. All units include the Mathematical Practices and indicate skills to maintain. However, the progression of the units is at the discretion of districts. *Prioritized Standards are noted in RED*						

Grades 3-5 Key: G= Geometry, MD=Measurement and Data, NBT= Number and Operations in Base Ten, NF = Number and Operations, Fractions, OA = Operations and Algebraic Thinking.

Georgia Department of Education

GSE Third Grade

GSE Third Grade Expanded Curriculum Map			
Standards for Mathematical Practice			
1 Make sense of problems and persevere in s 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the 4 Model with mathematics.	g them. soning of others.	5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for and express regularity in repeated re	soning.
Unit 1	Unit 2	Unit 3	Unit 4
Numbers and Operations in Base Ten	The Relationship Between Multiplication and Division	Patterns in Addition and Multiplication	Geometry
Use place value understanding and properties of operations to perform multidigit arithmetic. ${ }^{1}$ MGSE3.NBT. 1 Use place value understanding to round whole numbers to the nearest 10 or 100 . MGSE3.NBT. 2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. Represent and interpret data. MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	Represent and solve problems involving multiplication and division. MGSE3.OA. 1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 $\times 7$. MGSE3.OA. 2 Interpret whole number quotients of whole numbers, e.g., interpret 56 $\div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares (How many in each group?), or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each (How many groups can you make?). For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$. MGSE3.OA. 3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. ${ }^{2}$	Solve problems involving the four operations, and identify and explain patterns in arithmetic. MGSE3.OA. 8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. ${ }^{3}$ See Glossary, Table 2 MGSE3.OA. 9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. Represent and interpret data MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and twostep "how many more" and "how many less" problems using information presented in	Reason with shapes and their attributes. MGSE3.G. 1 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. MGSE3.G. 2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape. Represent and interpret data. MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph

[^0] Richard Woods, State School Superintendent

July 2015
All Rights Reserved

Georgia Department of Education

[^1]Richard Woods, State School Superintendent
July 2015
All Rights Reserved

Georgia Department of Education

GSE Third Grade
Richard Woods, State School Superintendent
July 2015
All Rights Reserved

Georgia Department of Education

GSE Third Grade Expanded Curriculum Map

Standards for Mathematical Practice

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.

5 Use appropriate tools strategically
6 Attend to precision.
7 Look for and make use of structure.
$\mathbf{8}$ Look for and express regularity in repeated reasoning.

Unit 5	Unit 6	Unit 7
Representing and Comparing Fractions	Measurement	Show What We Know
Develop understanding of fractions as numbers. ${ }^{5}$ MGSE3.NF. 1 Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts (unit fraction); understand a fraction $\frac{a}{b}$ as the quantity formed by a parts of size $\frac{1}{b}$. For example, $\frac{3}{4}$ means there are three $\frac{1}{4}$ parts, so $\frac{3}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$. MGSE3.NF. 2 Understand a fraction as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $\frac{1}{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $\frac{1}{b}$. Recognize that a unit fraction $\frac{1}{b}$ is located $\frac{1}{b}$ whole unit from 0 on the number line. b. Represent a non-unit fraction $\frac{a}{b}$ on a number line diagram by marking off a lengths of $\frac{1}{b}$ (unit fractions) from 0 . Recognize that the resulting interval has size $\frac{a}{b}$ and that its endpoint locates the non-unit fraction $\frac{a}{b}$ on the number line.	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. MGSE3.MD. 1 Tell and write time to the nearest minute and measure elapsed time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram, drawing a pictorial representation on a clock face, etc. MGSE3.MD. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (1). ${ }^{6}$ Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. ${ }^{7}$ Represent and interpret data. MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve oneand two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. MGSE3.MD. 4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal	ALL
MGSE3.NF. 3 Explain equivalence of fractions through reasoning with visual fraction models. Compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b. Recognize and generate simple equivalent fractions	scale is marked off in appropriate units- whole numbers, halves, or quarters	

[^2]Richard Woods, State School Superintendent
July 2015
All Rights Reserved

Georgia Department of Education

with denominators of $2,3,4,6$, and 8 , e.g., $\frac{1}{2}=\frac{2}{4}$ $\frac{4}{6}=\frac{2}{3}$.
Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.
Examples: Express 3 in the form $3=\frac{6}{2}$ (3 wholes is equal to six halves); recognize that $\frac{3}{1}=3$; locate $\frac{4}{4}$ and 1 at the same point of a number line diagram.
d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model.

Represent and interpret data.

MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve oneand two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
MGSE3.MD. 4 Generate measurement data by measuring
lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units- whole numbers, halves, or quarters.

[^0]: ${ }^{1}$ A range of algorithms will be used
 ${ }^{2}$ See glossary, Table 2

[^1]: (Order of Operations)
 ${ }^{4}$ Students need not use formal terms for these properties.

[^2]: ${ }^{5}$ Grade 3 expectations in this domain are limited to fractions with denominators of $2,3,4,6$ and 8 .
 ${ }^{6}$ Excludes compound units such as cm^{3} and finding the geometric volume of a container.
 ${ }^{7}$ Excludes multiplicative comparison problems (problems involving notions of "times as much"; see Glossary, Table 2).

